
logical
Release 2.0.0

Reity LLC

Oct 10, 2022

CONTENTS

1 Installation and Usage 3
1.1 Examples . 3

2 Development 5
2.1 Documentation . 5
2.2 Testing and Conventions . 5
2.3 Contributions . 6
2.4 Versioning . 6
2.5 Publishing . 6

2.5.1 logical module . 6

Python Module Index 15

Index 17

i

ii

logical, Release 2.0.0

Callable subclass of the tuple type for representing logical operators/connectives based on their truth tables.

CONTENTS 1

https://badge.fury.io/py/logical
https://logical.readthedocs.io/en/latest/?badge=latest
https://github.com/reity/logical/actions/workflows/lint-test-cover-docs.yml
https://coveralls.io/github/reity/logical?branch=main

logical, Release 2.0.0

2 CONTENTS

CHAPTER

ONE

INSTALLATION AND USAGE

This library is available as a package on PyPI:

python -m pip install logical

The library can be imported in the usual ways:

import logical
from logical import *

1.1 Examples

Each instance of the logical class (derived from the built-in tuple class) represents a boolean function that accepts n
inputs by specifying its output values across all possible inputs. In other words, an instance represents the output column
of a truth table for a function (under the assumption that the input vectors to which each output value corresponds are
sorted in ascending order). Thus, each instance representing a function that accepts n inputs must have length 2**n.

For example, consider the truth table below for a boolean function f that accepts three inputs:

x y z f (x, y, z)
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Notice that the input vectors (i.e., the left-most three column values in each row) are sorted in ascending order from top
to bottom. If we always assume this order for input vectors, the entire function f can be represented using the right-most
column. For the example function f defined by the table above, this can be done in the manner illustrated below:

>>> from logical import *
>>> f = logical((1, 0, 1, 0, 0, 1, 1, 0))

It is then possible to apply the instance f defined above to any three-component input vector:

3

https://pypi.org/project/logical
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical
https://docs.python.org/3/library/functions.html#func-tuple
https://en.wikipedia.org/wiki/Truth_table
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical.__call__

logical, Release 2.0.0

>>> f(0, 1, 1)
0
>>> f(1, 1, 0)
1

It is also possible to create a new logical instance that has a function attribute corresponding to a compiled Python
function that has the same behavior as the __call__ method (at least, on valid inputs). This Python function does
not check that inputs are of the correct type and format, but has an execution time that is usually at most half of the
execution time of the __call__ method:

>>> f = logical((1, 0, 0, 1, 0, 1, 0, 1))
>>> g = f.compiled()
>>> g.function(0, 0, 0)
1
>>> g.function(1, 1, 0)
0

Pre-defined instances are provided for all nullary, unary, and binary boolean functions. These are available both as
constants and as attributes of the logical class:

>>> logical.xor_(1, 0)
1
>>> and_(1, 0)
0

The constants nullary, unary, and binary are also defined. Each is a set containing exactly those instances of
logical that represent functions having that arity:

>>> unary
{(0, 0), (1, 0), (1, 1), (0, 1)}
>>> len(binary)
16

For convenience, the constant every is defined as the union of nullary, unary, and binary.

4 Chapter 1. Installation and Usage

https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical.compiled
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical.compiled
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical.__call__
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical.__call__
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical.nullary
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical.unary
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical.binary
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical.every
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical.nullary
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical.unary
https://logical.readthedocs.io/en/2.0.0/_source/logical.html#logical.logical.logical.binary

CHAPTER

TWO

DEVELOPMENT

All installation and development dependencies are fully specified in pyproject.toml. The project.
optional-dependencies object is used to specify optional requirements for various development tasks. This makes
it possible to specify additional options (such as docs, lint, and so on) when performing installation using pip:

python -m pip install .[docs,lint]

2.1 Documentation

The documentation can be generated automatically from the source files using Sphinx:

python -m pip install .[docs]
cd docs
sphinx-apidoc -f -E --templatedir=_templates -o _source .. && make html

2.2 Testing and Conventions

All unit tests are executed and their coverage is measured when using pytest (see the pyproject.toml file for config-
uration details):

python -m pip install .[test]
python -m pytest

Alternatively, all unit tests are included in the module itself and can be executed using doctest:

python src/logical/logical.py -v

Style conventions are enforced using Pylint:

python -m pip install .[lint]
python -m pylint src/logical

5

https://peps.python.org/pep-0621
https://pypi.org/project/pip
https://www.sphinx-doc.org
https://docs.pytest.org
https://docs.python.org/3/library/doctest.html
https://pylint.pycqa.org

logical, Release 2.0.0

2.3 Contributions

In order to contribute to the source code, open an issue or submit a pull request on the GitHub page for this library.

2.4 Versioning

The version number format for this library and the changes to the library associated with version number increments
conform with Semantic Versioning 2.0.0.

2.5 Publishing

This library can be published as a package on PyPI by a package maintainer. First, install the dependencies required
for packaging and publishing:

python -m pip install .[publish]

Ensure that the correct version number appears in pyproject.toml, and that any links in this README document to
the Read the Docs documentation of this package (or its dependencies) have appropriate version numbers. Also ensure
that the Read the Docs project for this library has an automation rule that activates and sets as the default all tagged
versions. Create and push a tag for this version (replacing ?.?.? with the version number):

git tag ?.?.?
git push origin ?.?.?

Remove any old build/distribution files. Then, package the source into a distribution archive:

rm -rf build dist src/*.egg-info
python -m build --sdist --wheel .

Finally, upload the package distribution archive to PyPI:

python -m twine upload dist/*

2.5.1 logical module

Callable subclass of the built-in tuple type for representing logical operators and connectives based on their truth
tables.

The two nullary, four unary, and sixteen binary operators are available as attributes of the logical class, and also
as constants. Likewise, the four sets of operators logical.nullary, logical.unary, logical.binary, and
logical.every are available both as attributes of logical and as exported top-level constants.

class logical.logical.logical(iterable)
Bases: tuple

Each instance of this class represents a boolean function of n inputs by specifying its output values across all
possible inputs. In other words, an instance represents the output column of a truth table for a function (under the
assumption that the input vectors to which each output value corresponds are sorted in ascending order). Each
instance representing a function that accepts n inputs must have length 2 ** n.

For example, consider the truth table below for a boolean function f that accepts two inputs:

6 Chapter 2. Development

https://github.com/reity/logical
https://semver.org/#semantic-versioning-200
https://pypi.org/project/logical
https://docs.readthedocs.io/en/stable/automation-rules.html
https://pypi.org
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

logical, Release 2.0.0

x y f (x, y)
0 0 1
0 1 0
1 0 1
1 1 0

The entire function f can be represented using the right-most column. For the example function f defined by the
table above, this can be done in the manner illustrated below.

>>> f = logical((1, 0, 1, 0))
>>> f(0, 1)
0
>>> f(1, 0)
1

Pre-defined instances are defined for all nullary, unary and binary functions, and are available as attributes of
this class and as top-level constants:

• () = logical.undef_ represents UNDEFINED (i.e., no inputs and no defined output)

• (0,) = logical.nf_ represents NULLARY FALSE (i.e., no inputs and a constant output)

• (1,) = logical.nt_ represents NULLARY TRUE (i.e., no inputs and a constant output)

• (0, 0) = logical.uf_ represents UNARY FALSE (i.e., a constant output for any one input)

• (0, 1) = logical.id_ represents IDENTITY

• (1, 0) = logical.not_ represents NOT

• (1, 1) = logical.ut_ represents UNARY TRUE (i.e., a constant output for any one input)

• (0, 0, 0, 0) = logical.bf_ represents BINARY FALSE

• (0, 0, 0, 1) = logical.and_ represents AND

• (0, 0, 1, 0) = logical.nimp_ represents NIMP (i.e., >)

• (0, 0, 1, 1) = logical.fst_ represents FST (i.e., first/left-hand input)

• (0, 1, 0, 0) = logical.nif_ represents NIF (i.e., <)

• (0, 1, 0, 1) = logical.snd_ represents SND (i.e., second/right-hand input)

• (0, 1, 1, 0) = logical.xor_ represents XOR (i.e., !=)

• (0, 1, 1, 1) = logical.or_ represents OR

• (1, 0, 0, 0) = logical.nor_ represents NOR

• (1, 0, 0, 1) = logical.xnor_ represents XNOR (i.e., ==)

• (1, 0, 1, 0) = logical.nsnd_ represents NSND (i.e., negation of second input)

• (1, 0, 1, 1) = logical.if_ represents IF (i.e., >=)

• (1, 1, 0, 0) = logical.nfst_ represents NFST (i.e., negation of first input)

• (1, 1, 0, 1) = logical.imp_ represents IMP (i.e., <=)

• (1, 1, 1, 0) = logical.nand_ represents NAND

• (1, 1, 1, 1) = logical.bt_ represents BINARY TRUE

2.5. Publishing 7

logical, Release 2.0.0

>>> logical.xor_(1, 0)
1
>>> and_(1, 0)
0

Because this class is derived from the tuple type, all methods and functions that operate on tuples also work
with instances of this class.

>>> logical((1, 0)) == logical((1, 0))
True
>>> logical((1, 0)) == logical((0, 1))
False
>>> logical((1, 0))[1]
0

If an attempt is made to create an instance using an iterable that cannot be interpreted as a truth table, an exception
is raised.

>>> logical(('a', 'b'))
Traceback (most recent call last):
...

TypeError: all entries in supplied truth table must be integers
>>> logical((-1, 2))
Traceback (most recent call last):
...

ValueError: all integers in supplied truth table must be 0 or 1
>>> logical((1, 0, 1))
Traceback (most recent call last):
...

ValueError: number of elements in supplied truth table must be zero or a power of 2

names: dict = {(): 'undef', (0,): 'nf', (0, 0): 'uf', (0, 0, 0, 0): 'bf', (0,
0, 0, 1): 'and', (0, 0, 1, 0): 'nimp', (0, 0, 1, 1): 'fst', (0, 1): 'id', (0, 1,
0, 0): 'nif', (0, 1, 0, 1): 'snd', (0, 1, 1, 0): 'xor', (0, 1, 1, 1): 'or',
(1,): 'nt', (1, 0): 'not', (1, 0, 0, 0): 'nor', (1, 0, 0, 1): 'xnor', (1, 0, 1,
0): 'nsnd', (1, 0, 1, 1): 'if', (1, 1): 'ut', (1, 1, 0, 0): 'nfst', (1, 1, 0,
1): 'imp', (1, 1, 1, 0): 'nand', (1, 1, 1, 1): 'bt'}

Typical concise names for all nullary, unary, and binary operators.

nullary: frozenset = frozenset({(0,), (1,)})
Set of all nullary operators.

unary: frozenset = frozenset({(0, 0), (0, 1), (1, 0), (1, 1)})
Set of all unary operators.

binary: frozenset = frozenset({(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1,
1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 0,
1), (1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1,
1)})

Set of all binary operators.

every: frozenset = frozenset({(0,), (0, 0), (0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1,
0), (0, 0, 1, 1), (0, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1),
(1,), (1, 0), (1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1), (1, 1), (1, 1,
0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)})

Set of all nullary, unary, and binary operators.

8 Chapter 2. Development

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#frozenset

logical, Release 2.0.0

__call__(*arguments: Union[Tuple[int, ...], Tuple[Iterable[int]]])→ int
Apply the function represented by this instance to zero or more integer arguments (where the arguments
collectively represent an individual input row within a truth table) or to a single iterable of integers (where
the entries of the iterable represent an individual input row within a truth table).

>>> logical((1,))()
1
>>> logical((1, 0))(1)
0
>>> logical((1, 0, 0, 1))(0, 0)
1
>>> logical((1, 0, 0, 1))(1, 1)
1
>>> logical((1, 0, 0, 1))(1, 0)
0
>>> logical((1, 0, 0, 1))(0, 1)
0
>>> logical((1, 0, 0, 1, 0, 1, 0, 1))(1, 1, 0)
0
>>> logical((1, 0, 0, 1, 0, 1, 0, 1))([1, 1, 0])
0
>>> logical((1, 0, 0, 1, 0, 1, 0, 1))((1, 1, 0))
0
>>> logical((1, 0, 0, 1, 0, 1, 0, 1))((1, 1, 0))
0

The supplied iterable of integers can be an iterator, as well.

>>> t = iter([1, 1, 0])
>>> logical((1, 0, 0, 1, 0, 1, 0, 1))(t)
0

The instance corresponding to the nullary function with no defined output raises an exception when applied
to an input.

>>> logical(())()
Traceback (most recent call last):
...

ValueError: no defined output

Any attempt to apply an instance to an invalid input raises an exception.

>>> logical((1, 0))(2.3)
Traceback (most recent call last):
...

TypeError: expecting zero or more integers or a single iterable of integers
>>> logical((1, 0))(['abc'])
Traceback (most recent call last):
...

TypeError: expecting zero or more integers or a single iterable of integers
>>> logical((1, 0))(2)
Traceback (most recent call last):
...

ValueError: expecting an integer that is 0 or 1

2.5. Publishing 9

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/glossary.html#term-iterator

logical, Release 2.0.0

name()→ str
Return the typical concise name for this operator.

>>> logical((0,)).name()
'nf'
>>> logical((1, 0, 0, 1)).name()
'xnor'
>>> len([o.name for o in logical.nullary])
2
>>> len([o.name for o in logical.unary])
4
>>> len([o.name for o in logical.binary])
16

arity()→ int
Return the arity of this operator.

>>> logical(()).arity()
0
>>> logical((1,)).arity()
0
>>> logical((1, 0)).arity()
1
>>> logical((1, 0, 0, 1)).arity()
2

compiled()→ logical.logical.logical
Return a new instance (representing the same logical function) that has a new function attribute corre-
sponding to a compiled version of the logical function it represents.

>>> (logical((1,)).compiled()).function()
1
>>> (logical((1, 0)).compiled()).function(1)
0
>>> f = logical((1, 0, 0, 1))
>>> g = f.compiled()
>>> g.function(1, 1)
1
>>> f = logical((1, 0, 0, 1, 0, 1, 0, 1))
>>> g = f.compiled()
>>> g.function(0, 0, 0)
1
>>> g.function(1, 1, 0)
0

The function is constructed by translating the truth table into an abstract syntax tree of a corresponding
Python function definition (using the ast module), compiling that function definition (using the built-in
compile function), executing that function definition (using exec), and then assigning that function to the
function attribute.

While the compiled function increases the amount of memory consumed by an instance, the execution time
of the compiled function on an input is usually at most half of the execution time of the __call__method.

undef_: logical.logical.logical = ()
Nullary operation with no defined output.

10 Chapter 2. Development

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ast.html#module-ast
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#exec

logical, Release 2.0.0

nf_: logical.logical.logical = (0,)
Nullary FALSE (constant) operation.

nf_()
0

nt_: logical.logical.logical = (1,)
Nullary TRUE (constant) operation.

nt_()
1

uf_: logical.logical.logical = (0, 0)
Unary FALSE (constant) operation.

x uf_(x)
0 0
1 0

id_: logical.logical.logical = (0, 1)
Unary IDENTITY operation.

x id_(x)
0 0
1 1

not_: logical.logical.logical = (1, 0)
Unary NOT operation (i.e., negation).

x not_(x)
0 1
1 0

ut_: logical.logical.logical = (1, 1)
Unary TRUE (constant) operation.

x ut_(x)
0 1
1 1

bf_: logical.logical.logical = (0, 0, 0, 0)
Binary FALSE (constant) operation.

(x, y) bf_(x, y)
(0, 0) 0
(0, 1) 0
(1, 0) 0
(1, 1) 0

2.5. Publishing 11

logical, Release 2.0.0

and_: logical.logical.logical = (0, 0, 0, 1)
Binary AND operation (i.e., conjunction).

(x, y) and_(x, y)
(0, 0) 0
(0, 1) 0
(1, 0) 0
(1, 1) 1

nimp_: logical.logical.logical = (0, 0, 1, 0)
Binary NIMP operation (i.e., >).

(x, y) nimp_(x, y)
(0, 0) 0
(0, 1) 0
(1, 0) 1
(1, 1) 0

fst_: logical.logical.logical = (0, 0, 1, 1)
Binary FST operation (i.e., first/left-hand input).

(x, y) fst_(x, y)
(0, 0) 0
(0, 1) 0
(1, 0) 1
(1, 1) 1

nif_: logical.logical.logical = (0, 1, 0, 0)
Binary NIF operation (i.e., <).

(x, y) nif_(x, y)
(0, 0) 0
(0, 1) 1
(1, 0) 0
(1, 1) 0

snd_: logical.logical.logical = (0, 1, 0, 1)
Binary SND operation (i.e., second/right-hand input).

(x, y) snd_(x, y)
(0, 0) 0
(0, 1) 1
(1, 0) 0
(1, 1) 1

xor_: logical.logical.logical = (0, 1, 1, 0)
Binary XOR operation (i.e., !=).

12 Chapter 2. Development

logical, Release 2.0.0

(x, y) xor_(x, y)
(0, 0) 0
(0, 1) 1
(1, 0) 1
(1, 1) 0

or_: logical.logical.logical = (0, 1, 1, 1)
Binary OR operation (i.e., disjunction).

(x, y) or_(x, y)
(0, 0) 0
(0, 1) 1
(1, 0) 1
(1, 1) 1

nor_: logical.logical.logical = (1, 0, 0, 0)
Binary NOR operation.

(x, y) nor_(x, y)
(0, 0) 1
(0, 1) 0
(1, 0) 0
(1, 1) 0

xnor_: logical.logical.logical = (1, 0, 0, 1)
Binary XNOR operation (i.e., ==).

(x, y) xnor_(x, y)
(0, 0) 1
(0, 1) 0
(1, 0) 0
(1, 1) 1

nsnd_: logical.logical.logical = (1, 0, 1, 0)
Binary NSND operation (i.e., negation of second/right-hand input).

(x, y) nsnd_(x, y)
(0, 0) 1
(0, 1) 0
(1, 0) 1
(1, 1) 0

if_: logical.logical.logical = (1, 0, 1, 1)
Binary IF operation.

(x, y) if_(x, y)
(0, 0) 1
(0, 1) 0
(1, 0) 1
(1, 1) 1

2.5. Publishing 13

logical, Release 2.0.0

nfst_: logical.logical.logical = (1, 1, 0, 0)
Binary NFST operation (i.e., negation of first/left-hand input).

(x, y) nfst_(x, y)
(0, 0) 1
(0, 1) 1
(1, 0) 0
(1, 1) 0

imp_: logical.logical.logical = (1, 1, 0, 1)
Binary IMP operation (i.e., implication or <=).

(x, y) imp_(x, y)
(0, 0) 1
(0, 1) 1
(1, 0) 0
(1, 1) 1

nand_: logical.logical.logical = (1, 1, 1, 0)
Binary NAND operation (i.e., negation of conjunction).

(x, y) nand_(x, y)
(0, 0) 1
(0, 1) 1
(1, 0) 1
(1, 1) 0

bt_: logical.logical.logical = (1, 1, 1, 1)
Binary TRUE (constant) operation.

(x, y) bt_(x, y)
(0, 0) 1
(0, 1) 1
(1, 0) 1
(1, 1) 1

14 Chapter 2. Development

PYTHON MODULE INDEX

l
logical.logical, 6

15

logical, Release 2.0.0

16 Python Module Index

INDEX

Symbols
__call__() (logical.logical.logical method), 8

A
and_ (logical.logical.logical attribute), 11
arity() (logical.logical.logical method), 10

B
bf_ (logical.logical.logical attribute), 11
binary (logical.logical.logical attribute), 8
bt_ (logical.logical.logical attribute), 14

C
compiled() (logical.logical.logical method), 10

E
every (logical.logical.logical attribute), 8

F
fst_ (logical.logical.logical attribute), 12

I
id_ (logical.logical.logical attribute), 11
if_ (logical.logical.logical attribute), 13
imp_ (logical.logical.logical attribute), 14

L
logical (class in logical.logical), 6
logical.logical

module, 6

M
module
logical.logical, 6

N
name() (logical.logical.logical method), 9
names (logical.logical.logical attribute), 8
nand_ (logical.logical.logical attribute), 14
nf_ (logical.logical.logical attribute), 10

nfst_ (logical.logical.logical attribute), 14
nif_ (logical.logical.logical attribute), 12
nimp_ (logical.logical.logical attribute), 12
nor_ (logical.logical.logical attribute), 13
not_ (logical.logical.logical attribute), 11
nsnd_ (logical.logical.logical attribute), 13
nt_ (logical.logical.logical attribute), 11
nullary (logical.logical.logical attribute), 8

O
or_ (logical.logical.logical attribute), 13

S
snd_ (logical.logical.logical attribute), 12

U
uf_ (logical.logical.logical attribute), 11
unary (logical.logical.logical attribute), 8
undef_ (logical.logical.logical attribute), 10
ut_ (logical.logical.logical attribute), 11

X
xnor_ (logical.logical.logical attribute), 13
xor_ (logical.logical.logical attribute), 12

17

	Installation and Usage
	Examples

	Development
	Documentation
	Testing and Conventions
	Contributions
	Versioning
	Publishing
	logical module

	Python Module Index
	Index

